Skip to main content

Installation

This guide will walk you through installing the Math-Physics-ML MCP system.

Prerequisites

Before installing, ensure you have:

  • Python 3.11 or higher
  • uv package manager (recommended) or pip
  • NVIDIA GPU with CUDA 12.x (optional, for GPU acceleration)
  • Git for cloning the repository

System Requirements

Minimum Requirements

  • Python 3.11+
  • 8GB RAM
  • 5GB disk space
  • NVIDIA GPU with 8GB+ VRAM
  • CUDA Toolkit 12.x
  • cuDNN 8.x

Installation Steps

1. Clone the Repository

git clone https://github.com/beagle/math-mcp.git
cd math-mcp

2. Install uv (if not already installed)

# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# Or use pip
pip install uv

3. Install Dependencies

# Install all dependencies (CPU-only by default)
uv sync

# For GPU support, install with GPU extras
uv sync --all-extras

This will:

  • Create a virtual environment in .venv/
  • Install all 4 MCP servers
  • Install shared packages (mcp-common, compute-core)
  • Install development dependencies

4. Verify Installation

# Activate the virtual environment
source .venv/bin/activate # Linux/macOS
# or
.venv\Scripts\activate # Windows

# Check that MCP servers are installed
which math-mcp quantum-mcp molecular-mcp neural-mcp

# Test a server
math-mcp --version

GPU Setup (Optional)

For GPU acceleration, you need to install CUDA support:

Install CUDA Toolkit

Follow the official NVIDIA CUDA installation guide for your OS:

Verify CUDA Installation

# Check CUDA version
nvcc --version

# Check GPU availability
nvidia-smi

Install GPU Python Packages

# CuPy for GPU-accelerated arrays
uv pip install cupy-cuda12x

# Verify GPU support
python -c "import cupy; print(cupy.cuda.is_available())"

Development Installation

For development work on the MCP servers:

# Install in editable mode
uv pip install -e shared/mcp-common -e shared/compute-core
uv pip install -e servers/math-mcp
uv pip install -e servers/quantum-mcp
uv pip install -e servers/molecular-mcp
uv pip install -e servers/neural-mcp

# Install pre-commit hooks
pip install pre-commit
pre-commit install

Troubleshooting

Python Version Issues

If you encounter Python version errors:

# Check Python version
python --version

# Install Python 3.11+ using your system package manager
# or use pyenv
pyenv install 3.11
pyenv local 3.11

GPU Not Detected

If CUDA is installed but not detected:

# Check CUDA library path
echo $LD_LIBRARY_PATH

# Add CUDA to library path
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

# Reinstall CuPy
pip uninstall cupy
pip install cupy-cuda12x

Import Errors

If you see module import errors:

# Reinstall dependencies
uv sync --reinstall

# Or reinstall specific package
uv pip install --force-reinstall mcp-common

Next Steps

After installation:

  1. Configure the MCP servers - Set up server configurations
  2. Quick Start Guide - Run your first computations
  3. Architecture Overview - Understand the system design

Uninstallation

To remove the Math-Physics-ML MCP system:

# Remove virtual environment
rm -rf .venv

# Remove installed packages (if installed globally)
pip uninstall math-mcp quantum-mcp molecular-mcp neural-mcp
pip uninstall mcp-common compute-core