Skip to main content

API Reference Overview

The Math-Physics-ML MCP System provides 57 tools across 4 specialized MCP servers.

Quick Navigation

  • Math MCP - 14 tools for symbolic algebra and numerical computing
  • Quantum MCP - 12 tools for wave mechanics and simulations
  • Molecular MCP - 15 tools for molecular dynamics
  • Neural MCP - 16 tools for neural network training

Tool Categories

Math MCP

CategoryToolsPurpose
DiscoveryinfoProgressive capability discovery
Symbolicsymbolic_solve, symbolic_diff, symbolic_integrate, symbolic_simplifyEquation solving, calculus
Numericalcreate_array, matrix_multiply, solve_linear_systemArray operations, linear algebra
Transformsfft, ifftFast Fourier Transform
Optimizationoptimize_function, find_rootsFunction minimization, root finding

Quantum MCP

CategoryToolsPurpose
DiscoveryinfoProgressive capability discovery
Potentialscreate_lattice_potential, create_custom_potentialDefine quantum potentials
Wavepacketscreate_gaussian_wavepacket, create_plane_waveInitial states
Simulationssolve_schrodinger, solve_schrodinger_2dTime evolution
Analysisanalyze_wavefunction, get_simulation_resultExtract observables
Visualizationrender_video, visualize_potentialGenerate plots/videos

Molecular MCP

CategoryToolsPurpose
DiscoveryinfoProgressive capability discovery
Systemcreate_particles, add_potentialDefine particle systems
Simulationsrun_md, run_nvt, run_nptRun MD in various ensembles
Analysiscompute_rdf, compute_msd, analyze_temperature, detect_phase_transitionStructural and thermodynamic analysis
Visualizationdensity_field, render_trajectoryGenerate visualizations

Neural MCP

CategoryToolsPurpose
DiscoveryinfoProgressive capability discovery
Modelsdefine_model, load_pretrained, get_model_summaryModel management
Dataload_dataset, create_dataloaderDataset handling
Trainingtrain_model, get_experiment_statusTraining workflows
Evaluationevaluate_model, compute_metricsModel assessment
Tuningtune_hyperparametersHyperparameter optimization
Visualizationplot_training_curves, confusion_matrixTraining analysis
Deploymentexport_modelModel export

Common Parameters

Most tools support these common parameters:

GPU Acceleration

use_gpu: bool = True  # Use GPU if available, fallback to CPU

Progressive Discovery

info(topic: Optional[str] = None)
# topic=None → List all categories
# topic='category' → Show tools in category
# topic='tool_name' → Detailed help for tool

Resource URIs

The system uses URI-based references for efficient data sharing:

URI PatternSourcePurpose
array://{id}Math MCPLarge numerical arrays
potential://{id}Quantum MCPQuantum potentials
simulation://{id}Quantum MCPCompleted simulations
system://{id}Molecular MCPParticle systems
trajectory://{id}Molecular MCPMD trajectories
model://{id}Neural MCPNeural network models
experiment://{id}Neural MCPTraining experiments

Response Formats

All tools return JSON responses with a consistent structure:

Success Response

{
"status": "success",
"data": {
// Tool-specific data
}
}

Error Response

{
"status": "error",
"error": {
"type": "ValueError",
"message": "Clear error description",
"suggestion": "How to fix the issue"
}
}

Async Task Response

{
"status": "submitted",
"task_id": "task_abc123",
"simulation_id": "sim_def456" // Optional result ID
}

GPU Support

All numerical tools support GPU acceleration:

# Explicit GPU use
result = matrix_multiply(a, b, use_gpu=True)

# Automatic backend selection
xp = gpu_manager.get_array_module()
result = xp.matmul(a, b)

GPU Availability Check

# Via info tool
info(topic="gpu")
# Returns: {gpu_available: true, backend: "cuda", device_count: 1}

Error Handling

Common error types and solutions:

Error TypeCauseSolution
ValueErrorInvalid input parametersCheck parameter ranges and types
GPUMemoryErrorInsufficient GPU memoryReduce array size or use CPU
TimeoutErrorOperation took too longIncrease timeout or reduce complexity
ResourceNotFoundErrorInvalid URI referenceCheck URI exists and is accessible

Rate Limits

Default resource limits (configurable in config.kdl):

  • Max array size: 100M elements
  • Max particles: 10M
  • Max time steps: 1M
  • Max epochs: 1000
  • Symbolic operation timeout: 30 seconds

Next Steps

Explore the detailed API documentation for each server:

  1. Math MCP API - Start here for foundational operations
  2. Quantum MCP API - Quantum simulations
  3. Molecular MCP API - Classical MD
  4. Neural MCP API - Deep learning